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1. INTRODUCTION AND MAIN RESULTS

Iterates of univariate Bernstein operators were studied by Kelisky and
Rivlin in 1967 [13]. One of the results of their paper was the following:

lim
M � �

BM
n ( f ; x)= f (0)+( f (1)& f (0))x, 0�x�1, (1)

where f is a continuous function on [0, 1], Bn ( f ; } ) is the Bernstein poly-
nomial of degree n associated with f, and where the iterates of the
Bernstein polynomial are defined by

BM
n ( f ; } ) := Bn (BM&1

n ( f ; } ); } ), M=2, 3, ...

Thus, (1) says that the iterates of the Bernstein polynomial converge to the
linear function that interpolates f at the points 0 and 1. Generalizations of
the results of Kelisky and Rivlin to different directions were made by
several authors (see Chen and Feng [5] for an overview).

On the other hand side, in 1973 Micchelli [15] introduced certain linear
combinations of iterates of univariate Bernstein operators. These linear
combinations can also be regarded as iterated Boolean sums �M Bn ( f ; } ),
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M�0, as is done, e.g., in [9]. We will adopt this notation for shortness in
the present paper. The Boolean sum of two operators A and B is given by

A�B := A+B&A b B,

and the iterated Boolean sum of an operator B is defined to be

�0 B := id, �1 B := B,

�M+1 B := B� (�M B), M�1.

After 1973, iterated Boolean sums of univariate Bernstein operators were
studied by other authors (see [9] for an overview). In 1995 Sevy [17]
found that the limit of iterated Boolean sums of Bernstein polynomials
is the interpolation polynomial with respect to the nodes (i�n, f (i�n)),
i=0, ..., n, and that the limit of iterated Boolean sums of Bernstein�
Durrmeyer operators is the least squares polynomial with respect to the
L2[0, 1]-norm.

The results of Kelisky�Rivlin and Sevy can be generalized once we use
some results from linear algebra. In order to do so, we introduce the
following notation: In a normed linear space X, a linear operator B: X � X
with (n+1)-dimensional range B(X)=span(b0 , ..., bn) is represented by

Bf := :
n

i=0

*i fbi , (2)

where *0 , ..., *n are linear functionals on X. With this, we denote the
Gramian associated with B by

B := (*i bj)
n
i, j=0. (3)

As a generalization of the result of Kelisky�Rivlin above we state:

Theorem 1. Let X be a normed linear space and B: X � X be a linear
operator with (n+1)-dimensional range B(X )=span(b0 , ..., bn). With the
operator B as in (2) and the Gramian B associated with B as in (3), the
following characterization holds:

The iterates BMf := B(BM&1 f ) converge for all f # X if and only if the
sequence of powers of the Gramian B converges (i.e. limM � � BM exists).

In this case, f := (*i f )n
i=0 has the unique representation f=v1+v0 where

v1 is an eigenvector with respect to eigenvalue 1 and B and v0 is a linear com-
bination of generalized eigenvectors with respect to eigenvalues of modulus
less than 1. Then we have

Lf := lim
M � �

BM f = :
n

i=0

(v1) i bi . (4)
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Remarks. (1) Matrices B for which limM � � BM exists are called
semiconvergent (see Definition 2 below) and are treated, e.g., in the book of
Berman and Plemmons [1].

(2) If 1 is not an eigenvalue of B or if v1=0, (4) is understood as
Lf =0.

(3) An easy exercise shows (see [1], p. 198) that in case that the
eigenvectors of # :=max[ |l | : l is eigenvalue of B, l{1] are all proper
eigenvectors we have

&Lf &BMf &�C } #M (5)

with a constant C which does not depend on M and & }& any norm on
span[b0 , ..., bn]. In other cases, (5) is a little different. However, for the
examples considered below, this estimate holds.

The subsequent theorem is a generalization of Sevy's result:

Theorem 2. Let X be a normed linear space and B : X � X as in (2) be
a linear operator with (n+1)-dimensional range B(X )=span(b0 , ..., bn).
With *(A) being the spectral radius of a matrix A and I denoting the identity
matrix, we have the following: If *(I&B)<1 is true, then the iterated
Boolean sums �M Bf converge for all f # X and B is nonsingular. In this
case, L� f := limM � � �M Bf is the unique interpolant in B(X ) that
satisfies the interpolation problem

*i ( f &L� f )=0, i=0, ..., n, (6)

and has the representation

L� f = :
n

i=0

(B&1f ) i bi . (7)

Conversely, if �M Bf, M � �, converges for all f # X, we have *(I&B)<1.

Remarks. (1) From the proof of Theorem 2 it will become clear that
Boolean sums of linear operators B have a close relation to partial sums of
the formal Neumann series for B&1=(I&(I&B))&1.

(2) Again, it is an easy exercise to show that in case of convergence,
for rank(I&B)=rank(I&B)2 the estimate

&L� f &�M Bf &�C } #M (8)

holds with a constant C which does not depend on M, # := *(I&B) and
& }& any norm on span[b0 , ..., bn]. As above, the estimate is a little different
for rank(I&B){rank(I&B)2, but it is true for the applications below.
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The paper is organized as follows: In Section 2, we apply Theorems 1
and 2 to the univariate spline operators of Schoenberg and Sablonnie� re. In
Section 3, application to the tensor product Schoenberg type operator, the
Bernstein operator and the Bernstein�Durrmeyer operator over triangles is
provided. Finally we give the proofs to the results of Sections 1�3 in
Section 4.

2. APPLICATIONS IN ONE VARIABLE

We define k th order B-splines Ni, k, t , i=&k+1, ..., n&1, over the knot
sequence t=(ti)

n+k&1
i=&k+1 # Rn+2k&1 with

t&k+1= } } } =t0�t1� } } } �tn= } } } =tn+k&1 ,
(9)

ti<ti+k&1 , i=&k+2, ..., n&1,

by the following relation:

Ni, k, t (x) := (ti+k&ti)[ti , ..., ti+k]( }&x)k&1
+ , x # [t0 , tn]. (10)

Here, [ti , ..., ti+k] f ( } ) denotes the divided difference of a function f with
respect to the knots ti , ..., ti+k , and f+ is defined pointwise by f+(x) :=
max[ f (x), 0], x # R. We assume Ni, k, t , i=&k+1, ..., n&1, to be left con-
tinuous and & in order to have a partition of unity on [t0 , tn]&Nn&1, k, t

to be also right continuous.
The conditions (9) are slightly different from the usual ones for spline

knots where ti<ti+k , i=&k+1, ..., n&1, is required. However, our condi-
tion is not really stronger, since for ti=ti+k&1 the intervals [t0 , ti] with
knot sequence t&k+1 , ..., ti+k&1 and [ti+k&1 , tn] with knot sequence
ti , ..., tn+k&1 can be considered separately.

Using B-splines we define the operators BI for continuous functions on
[t0 , tn]:

BI f := :
n&1

i= &k+1

f ({i)Ni, k, t . (11)

Here, the nodes {i are required to be strictly increasing and to satisfy

ti+1<{i<ti+k&1 ,
{i=ti+k&1 ,

if ti+1<ti+k&1 ,
if ti+1=ti+k&1 ,= i= &k+1, ..., n&1. (12)

For {i = ti* := (ti+1 + } } } + ti+k&1)�(k & 1), i =&k + 1, ..., n & 1, the
operator BI of (11) is Schoenberg's variation diminishing spline (see [3],
p. 159 ff.) which is frequently used for curve design in CAD systems.
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As a first application of the theorems of Section 1 we can show the sub-
sequent result:

Theorem 3. For the operators BI given in (11)�(12) with order k>1
and a function f # C[t0 , tn], the limits LI f := limM � � BM

I f and L�
I f :=

limM � � �M BI f exist. Moreover, the following is true:

(i) If BI f is Schoenberg's variation diminishing spline, then

LI f (x)= f (t0)+
x&t0

tn&t0

( f (tn)& f (t0)), x # [t0 , tn].

(ii) L�
I f is the unique spline of order k with respect to the knot

sequence t that interpolates f at the nodes {i , i= &k+1, ..., n&1.

Remark. For the knot sequence t with t&k+1= } } } =t0=0, t1= } } } =
tk=1, the B-splines are Bernstein basis polynomials, and we have
ti*=(i+k&1)�(k&1), i= &k+1, ..., 0. Thus, Schoenberg's variation
diminishing spline and the Bernstein polynomial are the same in this case,
and Theorem 3 includes the result of Kelisky�Rivlin and Sevy's result
concerning the Bernstein polynomial. Moreover, from Kelisky�Rivlin [13],
(1.6), and from equations (5) and (8) we get the following estimates for
Bernstein polynomials:

&LI f &BM
I f &�C } \k&2

k&1+
M

&L�
I f &�M BI f &�C� } \1&

(k&2)!
(k&1)k&2+

M

.

Here, & }& is any norm on ?k[0, 1].

Sablonnie� re [16] introduced another family of spline operators, which
apply to functions f # Lp [t0 , tn], 1�p��:

BII f := :
n&1

i= &k+1 \
k

ti+k&ti
|

tn

t0

Ni, k, t (x) f (x) dx+ Ni, k, t . (13)

These operators generalize the modified Bernstein operators of Durrmeyer
[6].

Here we present a result for Sablonnie� re's operators that is similar to
Theorem 3:
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Theorem 4. For operators BII as in (13) and a function f # Lp [t0 , tn],
1�p��, we have:

(i) lim
M � �

BM
II f #const=

k
n+k&1

:
n&1

i=&k+1

1
ti+k&ti

|
tn

t0

Ni, k, t (x) f (x) dx.

(ii) lim
M � �

�M BII f is the unique least squares spline approximant to f

from span[Ni, k, t : i=&k+1, ..., n&1] (with respect to the L2[t0 , tn]-norm).

Remark. For the special choice t&k+1= } } } =t0=0 and t1= } } } =tk=1
for the spline knots, Sablonnie� re's operators coincide with Durrmeyer's
operators. Therefore, the subsequent corollary holds, part (ii) of which can
be found in the paper of Sevy [17]:

Corollary 5. With the Bernstein�Durrmeyer operators Dk , defined for
f # Lp[0, 1], 1�p��, by

Dk f := k :
k&1

i=0
|

1

0
bi, k (x) f (x) dx bi, k

bi, k (x) := \k&1
i + xi(1&x)k&1&i, i=0, ..., k&1,

we have

(i) LII f (x) := limM � � DM
k f (x)#const#�1

0 f (x) dx.

(ii) L�
II f := limM � � �M Dk f is the unique least squares approxi-

mant to f from ?k , the space of polynomials of order not exceeding k (here,
least squares means with respect to the L2[0, 1]-norm).

(iii) with any norm & } & on ?k [0, 1] there holds:

&LII f &DM
k f &�C } \k&1

k+1+
M

&L�
II f &�M Dk f &�C� } \1&\2k&1

k +
&1

+
M

.

3. APPLICATIONS IN MORE THAN ONE VARIABLE

In this section, we have a look at three families of operators in two
variables. It should become clear that the general setting in more than two
variables is to be treated along the same lines, but is simply a little more
technical.
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The first family of operators to be considered here is the tensor product
spline operators of Schoenberg type: Given the knot sequences t=
(ti)

n+k&1
i= &k+1 and t~ =(t~ i)n~ +k� &1

i=&k� +1 , we define the B-splines Ni, k, t and Ni, k� , t~ of
order k and k� , respectively, as in Section 2. For the node sequences
{=({i)

n&1
i=&k+1 and {~ =({~ i)n~ &1

i=&k� +1 , we require (12) in either case. Then we
can define the operator BT by

BT : C([t0 , tn]_[t~ 0 , t~ n~ ]) � C([t0 , tn]_[t~ 0 , t~ n~ ])
(14)

BT f := :
n&1

i= &k+1

:
n~ &1

j=&k� +1

f ({i , {~ j) } Ni, k, t Nj, k� , t~ .

The theorem below shows that the limits of BT's iterates and BT's
iterated Boolean sums look as we expected:

Theorem 6. For the tensor product Schoenberg operator BT of (14), we
have

(i) lim
M � �

BM
T f (x, y)=

t~ n~ &y
t~ n~ &t~ 0 \

tn&x
tn&t0

f (t0 , t~ 0)+
x&t0

tn&t0

f (tn , t~ 0)+
+

y&t~ 0
t~ n~ &t~ 0 \

tn&x
tn&t0

f (t0 , t~ n~ )+
x&t0

tn&t0

f (tn , t~ n~ )+
(ii) lim

M � �
�M BT f is the unique interpolant to f in

span[Ni, k, t } Nj, k� , t~ : i=&k+1, ..., n&1, j=&k� +1, ..., n~ &1]

with respect to the nodes ({i , {~ j), i=&k+1, ..., n&1, j=&k� +1, ..., n~ &1.

Remark. An analoguous result for tensor products of Sablonnie� re's
operators can be proved by the same method as is used in the proof of
Theorem 6.

Our second bivariate example deals with the Bernstein operator over tri-
angles which was introduced by Lorentz [14]: Let S := [(x, y) : x, y�0,
x+ y�1] be the standard triangle in R2. Then for f # C(S), the Bernstein
operator of total order k over S is defined by

BI, 2 f := :
0�i+ j<k

f (i�(k&1), j�(k&1))bij , (15)

where the Bernstein basis functions bij , 0�i+ j<k, are given by

bij (x, y) :=
(k&1)!

i! j!(k&1&i& j )!
xiy j (1&x&y)k&1&i& j, (x, y) # S. (16)
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The result that deals with this operator also profits from Theorems 1
and 2 of Section 1. Part (i) of it was proved already by Chang and Feng
in 1986 [4] in a way different from ours.

Theorem 7. For the Bernstein operator over the standard triangle, BI, 2 ,
according to (15) and (16) and for f # C(S), we have

(i) LI, 2 f (x, y) := limM � � BM
I, 2 f (x, y)= f (1, 0)x+ f (0, 1) y

+(1&x&y) f (0, 0).

(ii) L�
I, 2 f := limM � � �M BI, 2 f is the unique bivariate interpola-

tion polynomial of total order k with respect to the data

[(i�(k&1), j�(k&1), f (i�(k&1), j�(k&1))) : 0�i+ j<k].

(iii) with any norm & } & on ?2
k (S), there holds

&LI, 2 f &BM
I, 2 f &�C } \k&2

k&1+
M

&L�
I, 2 f &�M BI, 2 f &�C� } \1&

(k&1)!
(k&1)k&1+

M

.

For f # Lp(S), 1�p��, Derriennic [8] introduced Durrmeyer operators
over simplices which read as follows in two dimensions:

BII, 2 f := k(k+1) :
0�i+ j<k \|S

bij (x, y) f (x, y) dx dy+ bij . (17)

Here, bij are the Bernstein basis functions as in (16). For these operators,
we can state and prove our last result:

Theorem 8. For the Durrmeyer operator over the standard triangle,
BII, 2 , according to (17) and (16) and for f # Lp (S), 1� p��, we have

(i) LII, 2 f (x, y) := limM � � BM
II, 2 f (x, y)=�S f (x, y) dx dy.

(ii) L�
DII f := limM � � �M BII, 2 f is the unique least squares approx-

imation polynomial to f from ?2
k (S), the space of bivariate polynomials of

total order k (here, least squares means with respect to the L2(S) norm).

(iii) with any norm & } & on ?2
k (S), there holds

&LII, 2 f &BM
II, 2 f &�C } \k&1

k+2+
M

&L�
II, 2 f &�M BII, 2 f &�C� } \1&\ 2k

k+1+
&1

+
M

.
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4. THE PROOFS

Before we prove our results, we introduce some notation and list some
definitions and facts from matrix theory which will be useful in the sequel.

For finite linear combinations �n
i=0 ai bi where ai # R and bi are func-

tions, we often write

:
n

i=0

ai bi=: bTa with a := (ai)
n
i=0 and b := (bi)

n
i=0.

Proposition 1 [18], Th. 3.7. If A is an arbitrary complex (n+1)_
(n+1) matrix with *(A)<1, then I&A is nonsingular, and

(I&A)&1=I+A+A2+ } } } ,

the series on the right converging. Conversely, if the series on the right
converges, then *(A)<1.

Definition 2 [1], Def. 6.4.8. A matrix A # R(n+1)_(n+1) is called semi-
convergent whenever limM � � AM exists.

Proposition 3 [1], Ex. 6.4.9. Let A # R(n+1)_(n+1). Then A is semi-
convergent if and only if each of the following conditions hold:

(1) *(A)�1 (*(A) is the spectral radius of A),

(2) rank(I&A)2=rank(I&A),

(3) if *(A)=1, then every eigenvalue of A with modulus 1 equals 1.

Proposition 4 [1], Lemma 7.6.9. Let A # R (n+1)_(n+1). Then A is
semiconvergent if and only if the Jordan normal form of A is

A=V \I
0

0
K+ V&1, (18)

where the identity matrix I is missing if 1 is not an eigenvalue of A and where
*(K)<1.

Definition 5 [1], Ex. 2.6.25. A matrix A is called totally nonnegative if
all its minors of any order are nonnegative.

Proposition 6 (cp. [1], Ex. 2.6.25 and Ex. 2.6.28). A nonsingular, totally
nonnegative matrix A=(aij)

n
i, j=0 # R(n+1)_(n+1) with aij>0 for |i& j |�1

has n+1 distinct positive eigenvalues.
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Proposition 7 [18], Lemma 2.5. Let A=(aij)
n
i, j=0 # R(n+1)_(n+1) be

irreducible and let all its entries aij be nonnegative. Then with zi := �n
j=0 aij

there is either zi=*(A), i=0, ..., n, or min0�i�n zi<*(A)<max0�i�n zi .

Proof of Theorem 1. We can write

Bf = :
n

i=0

*i fbi=bTf, (19)

with f=(*i f )n
i=0 and b=(bi)

n
i=0 the vector of basis functions in B(X ).

Thus, by the linearity of the functionals *i , i=0, ..., n,

B2 f = :
n

i=0
\*i \ :

n

j=0

*j fbj++ bi= :
n

i=0

bi :
n

j=0

(*i bj)(*j f )=bTB f,

with B as in (3), and induction shows

BM f =bTBM&1 f, M�1. (20)

This implies that BMf converges for all f # X if and only if BM&1

converges.
From Proposition 4, we see that in this case B can be written as in (18),

where the columns of V are generalized eigenvectors of B. Now (18) allows
to write f=v1+v0 as stated in the theorem we are to prove. Therefore,
with *(K)<1, we have

lim
M � �

BM f =bTV \I
0

0
limM � � KM+ V&1(v1+v0)

=bTV \ I
0

0
0+ V&1(v1+v0)

=bTv1 ,

where I is missing if 1 is not an eigenvalue of B. This equals (4). K

Proof of Theorem 2. We can show the following representation for
iterated Boolean sums of finite dimensional operators by mathematical
induction on M�1:

�M Bf =B(id+(id&B)+(id&B)2+ } } } +(id&B)M&1) f

=bT(I+(I&B)+(I&B)2+ } } } +(I&B)M&1) f. (21)

Here we used the notation f=(*i f )n
i=0 , b=(bi)

n
i=0 as above and id for the

identity on X. Equation (21) shows that iterated Boolean sums have a
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close relation to partial sums of the formal Neumann series for B&1=
(I&(I&B))&1. Now (21) and Proposition 1 with A := I&B make up the
main part of the proof.

What is left to prove is (6) and (7). We know that for *(I&B)<1 the
Gramian B is nonsingular, and mathematical induction on M�1 shows

�M Bf =bTB&1(I&(I&B)M) f. (22)

Now (22) yields (7) for M � �.
In order to prove (6) we proceed as follows: Let [l0 , ..., ln] #

span[b0 , ..., bn] be the biorthonormal basis to the linear functionals
[*0 , ..., *n], i.e. we have

*i lj=$ij , i, j=0, ..., n, (23)

whereas $ij is the Kronecker symbol. (Such a basis exists since B is non-
singular.) The last equation implies the relation

bTB&1=lT, (24)

where l is the vector of Lagrange functions l=(l0 , ..., ln)T. To see this, just
apply the functionals *i , i=0, ..., n, to (24), write this in matrix form and
use (23) to obtain BB&1=I. Now (24) yields

L� f = lim
M � �

�M Bf =bTB&1 f=lT f

and finally

*i ( f &L�f )=*i f &*i (lT f )=0, i=0, ..., n,

by the biorthonormality of the functionals *i and the Lagrange functions li .
The uniqueness of the interpolant is a direct consequence of the non-
singularity of B. K

Proof of Theorem 3. The idea here is the following: First, prove that B

is semiconvergent and that *(I&B)<1 holds. With this, apply Theorems 1
and 2.

1. B's eigenvalues are 0 < l&k+1 < } } } < ln&2 = ln&1 = 1, hence
*(I&B)<1!

Observe that B has the following structure:

1 0 } } } 0 0

V V } } } V V
B=\ b b+ .

V V } } } V V

0 0 } } } 0 1
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Here, all the ``V''-entries are nonnegative. Hence, the eigenvalues of B are
1 (twofold) and eigenvalues that are at the same time eigenvalues of the
matrix B� := (Nj, k, t ({i))n&2

i, j= &k+2. From de Boor [2] (Corollary 2), we can
see that B� is totally nonnegative, i.e. all of B� 's minors of any order are
nonnegative. Moreover, B� is nonsingular since B is nonsingular and has
the special structure we mentioned above.

By our assumptions on the interpolation nodes and the spline knots in
(12), we know that for |i& j |�1 we have Nj, k, t ({i)>0, i, j=&k+2, ...,
n&2. Thus we can apply Proposition 6 to B� , which shows that B� has
n+k&3 distinct positive eigenvalues. Since B� is also nonnegative and
irreducible by (12), we can apply Proposition 7 to see that *(B� )<1.
(Remember that N&k+1, k, t ({&k+2)>0, hence the (&k+2)th row sum of
B� is less than 1.) This proves that B's eigenvalues are 0<l&k+1< } } } <
ln&2=ln&1=1.

2. B is semiconvergent !
In order to show this, we use the characterization for semiconvergent

matrices from Proposition 4: From the discussion in 1. above, we see that
*(B)=1 and that 1 is the only eigenvalue of modulus 1. From the discus-
sion in 3. below we see that we have two linearly independent eigenvectors
with respect tot eigenvalue 1, hence rank(I&B)2=rank(I&B).

3. Finding the part of f that belongs to eigenvector 1 for {i=ti*,
i=&k+1, ..., n&1.

Remember that Schoenberg's variation diminishing spline approximant
to f # C([t0 , tn]) is given by

Vf := :
n&1

i=&k+1

f (ti*)Ni, k, t

and reproduces linear functions. This implies that (1)n&1
i=&k+1 and

(ti*)n&1
i=&k+1 are eigenvectors of B with respect to eigenvalue 1. From this,

we see that every eigenvector with respect to 1 must have the form
( f&k+1+(ti*&t*&k+1)�(t*n&1&t*&k+1)( fn&1& f&k+1))n&1

i= &k+1.
Now if we split f=( f (ti*))n&1

i= &k+1 according to f=f1+(f&f1) with
f1 = ( f (t*&k+1) + (ti*&t*&k+1)�(t*n&1& t*&k+1)( f (t*n&1)& f (t*&k+1)))n&1

i= &k+1 ,
we have (f&f1)&k+1=(f&f1)n&1=0. Thus f1 is an eigenvector with respect
to 1, and the components of f&f1 for the eigenvectors corresponding to
eigenvalue 1 are zero.

4. Applying Theorems 1 and 2.
Because B is semiconvergent, we can apply Theorem 1 to see that

limM � � BM
I f exists for all f # C[t0 , tn].
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In order to prove (i) of the theorem here, we remark that the Schoenberg
nodes ti* satisfy (12). Now the discussion in 3. above and Theorem 1 show

lim
m � �

BM
I f = :

n&1

i= &k+1
\f (t*&k+1)+

ti*&t*&k+1

t*n&1&t*&k+1

( f (t*n&1)& f (t*&k+1))+ Ni, k, t

= f (t&k+1)+
} &t*&k+1

t*n&1&t*&k+1

( f (t*n&1)& f (t*&k+1)).

The second equation above is a consequence of the linear precision of
Schoenberg's variation diminishing spline approximant.

Now it remains to prove (ii). From 1. above, we know that *(I&B)<1
holds. Theorem 2 tells us that then the Boolean sums �M BI f converge
and that we have

f ({i)=L�
I f ({i), i=&k+1, ..., n&1,

by (6). This concludes the proof. K

Proof of Theorem 4. Sablonnie� re has shown in [16], Theorem 3, that
BII is a self-adjoint operator in L2[t0 , tn] with real, positive and simple
eigenvalues

0<l&k+1< } } } <ln&1=1. (25)

Since BII is linear and has finite dimensional range, these eigenvalues are
also the eigenvalues of the corresponding Gramian B=(k�(ti+k&ti)
�tn

t0
Ni, k, t (x) Nj, k, t (x) dx)n&1

i, j= &k+1. Therefore, B is nonsingular and��by
Proposition 3��semiconvergent, and it satisfies *(I&B)=1&l&k+1<1.
Thus Theorems 1 and 2 show the existence of limM � � BM

II f and
limm � � �M BII f.

In order to see (i), note that e := (1, ..., 1)T is an eigenvector to eigen-
value 1 and that the selfadjointness of BII implies that there is an orthonor-
mal basis of eigenvectors of B in Rn+k&1. The part of f=(k�(ti+k&ti)
�tn

t0
Ni, k, t (x) f (x) dx)n&1

i= &k+1 that corresponds to eigenvalue 1 is therefore

(eTf�eTe)e=1�(n+k&1) :
n&1

i= &k+1

k�(ti+k&ti) |
tn

t0

Ni, k, t (x) f (x) dx } e.

Together with the partition of unity property for B-splines, this yields (i).
To see (ii), we apply (6) to the present case and obtain

k�(ti+k&ti) |
tn

t0

Ni, k, t (x)( f (x)&g(x)) dx=0, i=&k+1, ..., n&1,
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with g := limm � � �M BII f. Hence the difference f&g is orthogonal to
span[Ni, k, t : i=&k+1, ..., n&1] with respect to the scalar product in
L2[t0 , tn], and the theorem is proved. K

Proof of Corollary 5. What is left to proof is (iii). This follows from (5),
(8) and the spectral properties of Durrmeyer operators which were studied
by Derriennic (see [7], Prop. I.2 and Th. III.3). K

Proof of Theorem 6. The tensor product Schoenberg operator BT of
(14) can be written as

BT=B1 �� B2

with

B1 f := :
n&1

i=&k+1

f ({i)Ni, k, t , f # C([t0 , tn]),

B2 g := :
n~ &1

j=&k� +1

g({~ j )N j, k� , t~ , g # C([t~ 0 , t~ n~ ]),

and where �� denotes the completion of the tensor product with respect to
the so-called =-crossnorm (see [12] for further details). Convergence of ten-
sor product operators was investigated by Hau?mann and Zeller in [12].
We adopt Theorem 1 thereof in the following form.

Proposition 8 (Hau?mann, Zeller). Assume that we are given conti-
nuous operators K, KM : C([t0 , tn]) � C([t0 , tn]) and L, LM : C([t~ 0 , t~ n~ ]) �
C([t~ 0 , t~ n~ ]) as well as a function f # C([t0 , tn]_[t~ 0 , t~ n~ ]). Then with the
=-completion of the tensor product, �� , we have

&(KM �� LM) f &(K �� L) f &��&K&� } max
x # [t0 , tn]

&Lfx&LM fx&�

+&LM&� } max
y # [t~ 0 , t~ n~ ]

&Kfy&KM fy&� , (26)

where fx (y) := f (x, y), x fixed, and fy (x) := f (x, y), y fixed.

Remark. The norms & } &� in (26) are supremum norms on C([t0 , tn]),
C([t~ 0 , t~ n~ ]) and C([t0 , tn]_[t~ 0 , t~ n~ ]) as well as operator norms. It should
be clear which one is meant in either case.

In order to prove (i) of Theorem 6, we set K := limM � � BM
1 and L :=

limM � � BM
2 as well as KM := BM

1 and LM := BM
2 in (26) with B1 and B2

as defined above. Since K is the operator that maps a continuous function
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onto its two point Lagrange interpolant with respect to t0 and tn , we know
&K&�=1. Moreover, we have

&LM&�=&BM
2 &��&B2&M

�=1,

as is well known.
Now from the univariate result (Theorem 3) we know that &Lfx&LM fx&�

�0 for every fixed x and &Kfy&KM fy&� � 0 for every fixed y. In
what follows we will show that this convergence is uniform. To this end,
we write b=(Ni, k, t)

n&1
i=&k+1 as well as B=(Nj, k, t (ti*))n&1

i, j=&k+1 and
fy := ( f (ti*, y))n&1

i=&k+1 , where ti*=(ti+1+ } } } +ti+k&1)�(k&1) are the
Schoenberg knots again. Then we have the unique representation
fy=f1+f0 with f1 being the eigenvector part with respect to eigenvalue 1
and B. From Theorems 1 and 3 and the respective proofs we conclude

&Kfy&KM fy&�=&bT f1&bTBM&1(f1+f0)&�

=&bT f1&bTf1&bTBM&1 f0&�

=&bTBM&1 f0&� .

The stability of the B-spline basis (see deBoor [3], Cor XI.1) now
implies

&Kfy&KM fy&��&BM&1 f0&� , (27)

where the norm on the right hand side is the vector maximum norm,
defined by &a&� := maxi |ai | for a vector a. From Proposition 4 and the
proof of Theorem 3 as well as the definition of the vector f0 above, we can
see

BM&1 f0=V \0
0

0
KM&1+ V&1 f0 ,

where K=diag(ln&3, ..., l&k+1) is the diagonal matrix whose nonzero entries
are the eigenvalues of B that are different from 1 with ln&3> } } } >l&k+1.
This, together with (27) yields

&Kfy&KM fy&��&V&� "\0
0

0
KM&1+"�

&V&1&� &f0&�

=&V&� } l M&1
n&3 } &V&1&� &f0&� , (28)

where for a square matrix A=(aij ), the matrix maximum norm is defined
to be &A&� := maxi �j |aij | .

233LIMITS OF ITERATES OF LINEAR OPERATORS



File: 640J 303916 . By:DS . Date:21:04:97 . Time:08:22 LOP8M. V8.0. Page 01:01
Codes: 2293 Signs: 935 . Length: 45 pic 0 pts, 190 mm

From the proof of Theorem 3 we get

&f0&�="\f (ti*, y)&\ t*n&1&ti*
t*n&1&t*&k+1

f (t*&k+1, y)

+
ti*&t*&k+1

t*n&1&t*&k+1

f (t*n&1 , y)++
n&1

i=&k+1"�

�3 max
&k+1�i�n&1

| f (ti*, y)|

�3 & f &� .

This, together with (28), shows

&Kfy&KM fy&��Cl M&1
n&3 & f &�

whereas the constant C is independent of y. Thus, we have

max
y # [t~ 0 , t~ n~ ]

&Kfy&KM fy&� � 0, (29)

and analogously

max
x # [t0 , tn]

&Lfx&LM fx&� � 0. (30)

Now (26) together with some basic tensor product theory, for which a
convenient reference is the book of Greub [11], yields the relation

(K �� L) f = lim
M � �

(BM
1 �� BM

2 ) f = lim
M � �

(B1 �� B2)M f = lim
M � �

BM
T f,

which equals (i).
In order to prove (ii) we set K :=limM � � �M B1 , L :=limM � � �M B2 ,

KM := �M B1 , and LM := �M B2 . Then K is a continuous linear operator
by our conditions for the knots and nodes, as can be seen from the proof
of Theorem 3. Thus, we have &K&�<�. Moreover,

&LM&�=&id&(id&B2)M&�

�1+&id&B2&M
��2,

since we have seen &id&B2&�<1 in Theorem 3. Here, id is the identity in
C([t~ 0 , t~ n~ ]).
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As above, we have &Lfx & LM fx&� � 0 for every fixed x and
&Kfy&KM fy&� � 0 for every fixed y. In order to prove the uniform con-
vergence of &Kfy&KM fy&� � 0 for y # [t~ 0 , t~ n~ ], we remember

&Kfy&KM fy&�=&bTB&1fy&bTB&1(I&(I&B)M) fy&�

=&bTB&1(I&B)M fy&�

from the proof of Theorem 2, where the notations for b, B, and fy are
analogous to above. With the techniques from the first part of the present
proof we can conclude

&Kfy&KM fy&��&B&1(I&B)M fy&�

�&B&1&� &(I&B)M&� &fy&�

�&B&1&� &(I&B)M&� & f &�

Again, the right hand side is independent of y # [t~ 0 , t~ n~ ]. Since *(I&B)<1
according to the proof of Theorem 3, this implies &(I&B)M&� � 0 and
shows the uniform convergence for iterated Boolean sums of Schoenberg
type operators. Thus, by means of (26), we have shown (ii). K

Proof of Theorem 7. The main part of the proof here is to determine the
eigenvalues of the Gramian B=(b@~ }~ (i�(k&1), j�(k&1)))0�i+ j, @~ +}~ <k , by
considering the Gramian G=((i�(k&1)) @~ ( j�(k&1)) }~ )0�i+ j, @~ +}~ <k which is
similar to B. In order to determine the eigenvalues of G, we mimic the
technique of Kelisky and Rivlin in [13]: Observe that after some straight-
forward calculations the bivariate Bernstein operator BI, 2 can be written in
the following form in terms of monomials:

BI, 2 ( f, x, y)= :
0�i+ j<k

f \ i
k&1

,
j

k&1+
_

(k&1)!
i ! j !(k&1&i& j )!

xi y j(1&x&y)k&1&i& j

= :
k&1

q=0

:
q

+=0
\ :

+

i=0

:
q&+

j=0

f \ i
k&1

,
j

k&1+
_

(k&1)!
i ! j !(+&i)! (q&+& j )! (k&1&q)!

(&1)q&i& j+ x+yq&+.

(31)
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After some further calculations, for 0�@~ + }~ <k we see

BI, 2 (x@~ y }~ , x, y)

= :
k&1

q=0

:
q

+=0
\ :

+

i=0

:
q&+

j=0
\ i

k&1+
@~

\ j
k&1+

}~

}
(k&1)!

i ! j ! (+&i)! (q&+& j )! (k&1&q)!
(&1)q&i& j+ x+yq&+

= :
k&1

q=0

:
q

+=0 \
(k&1)!

(k&1&q)!
1

(k&1) @~ +}~ { @~
+={

}~
q&+=+ x+yq&+, (32)

where the symbol [ u
v] stands for the Stirling numbers of the second kind

(see Graham et al. [10], Ch. 6.1, for the necessary background). Since we
have (see [10], p. 264) [ u

v]=0 for v>u and [ u
v]=1, equation (32) gives

BI, 2 (x@~ y }~ , x, y)= :
@~

+=0

:
}~

&=0

(k&1)!
(k&1&+&&)!

1
(k&1) @~ +}~ { @~

+={
}~
&= x+y&. (33)

Thus, the matrix G=(g (i, j), (@~ , }~ ))0�i+ j, @~ + }~ <k that describes the operation
of the triangular Bernstein operator on the monomial basis of ?2

k is an
upper triangular matrix. Its eigenvalues equal its diagonal entries which
can be read off as

l (@~ , }~ )=
(k&1)!

(k&1&@~ & }~ )!
1

(k&1) @~ +}~ �1, 0�@~ + }~ <k,

with the biggest eigenvalues l(0, 0)=l(1, 0)=l(0, 1)=1 and the smallest eigen-
values l(k&1, 0)= } } } =l(0, k&1)=(k&1)!�(k&1)k&1. Since G is similar to
B, we know that these are also the eigenvalues of B.

The rest of the proof can be obtained by using the fact that the bivariate
Bernstein operator has the linear precision property and by using the same
techniques as in the proof of Theorem 3. K

Proof of Theorem 8. From Derriennic [8] (Prop. I.1 and Th. II.1) we
know that BII, 2 is a self-adjoint operator in L2(S) with eigenvalues
l(0, 0)=1 and l(i, j)=(k+1)! (k&1)!�((k+1+i+j)! (k&1&i&j)!), 0<i+ j<k.
With this, the proof goes along the same lines as the proofs of Theorem 4
and Corollary 5. K
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